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We develop a model for planetesimal-driven migration (PDM) in the context of rocky planetary embryos
in the terrestrial planet region during the runaway and oligarchic growth phases of inner planet forma-
tion. We develop this model by first showing that there are five necessary and sufficient criteria that must
be simultaneously satisfied in order for a rocky inner Solar System embryo to migrate via PDM. To inves-
tigate which embryos within a given disk satisfy the five criteria, we have developed a Monte Carlo plan-
etesimal merger code that simulates the growth of embryos from a planetesimal disk with nebular gas.
The results of our Monte Carlo planetesimal merger code suggest that, for typical values of the minimum
mass solar nebula for the inner Solar System, an average of 0:2 embryos capable of PDM emerge over the
lifetime of the disk. Many disks in our simulations produce no migration candidates, but some produced
as many as 3. The number of embryos that experience PDM in a disk increases with increasing disk mass
and decreasing il planetesimal mass, although we were not able to simulate disks where the average ini-
tial planetesimal size was smaller than 50 km. For disks 4� more massive than the standard minimum
mass solar nebula, we estimate that an average of 1:5 embryos capable of PDM emerge, with some pro-
ducing as many as 7.

� 2014 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

A phenomenon called planetesimal-driven migration (PDM) has
been studied in the context of the evolution of giant planet orbits
(Fernandez and Ip, 1984; Malhotra, 1993; Levison et al., 2007)
and giant planet cores (Levison et al., 2010). PDM arises from the
asymmetric scattering by a large body embedded in a disk of
planetesimals (Kirsh et al., 2009). When a large body preferentially
scatters planetesimals either inward (toward the Sun) or outward
(away from the Sun), net orbital angular momentum is transferred
between the disk and the large body, causing a drift in the large
body’s semimajor axis. Simulations of rocky planet formation in
the inner Solar System have not included PDM, because, as we will
show, these simulations have not had the resolution necessary to
resolve this process.

Unfortunately, as we discuss in more detail below, we cannot
yet perform a single end-to-end calculation of terrestrial planet
formation that captures the important physical processes accu-
rately enough. We designed a multi-stepped series of calculations
that are intended to focus on evaluating whether PDM should be
considered an important process in terrestrial planet formation,
rather than to perform accurate terrestrial planet formation simu-
lations. In particular, our goal is to determine the conditions that
lead to PDM of terrestrial embryos, and show how the growth his-
tory of embryos is altered for those objects that undergo PDM.

Using N-body simulations, we identify five criteria that must be
simultaneously met in order for PDM to take place, which are each
described in detail in Section 2.3. In Section 3 we use a newly
developed Monte Carlo code called GAME (Growth And Migration
of Embryos) to model planetary accretion through the runaway
and oligarchic regimes. We use results of GAME, coupled with
our migration criteria, to show when and where PDM can occur
for a variety of plausible models for the inner Solar System plane-
tesimal disk. As we will show in more detail, PDM allows a small
number of embryos to become highly mobile in the disk. This
mobility may alter the assumption about how embryos and plane-
tesimals are distributed in the terrestrial planet disk during the
start of late-stage accretion.
1.1. Summary of planet formation models

We briefly summarize the ‘‘standard’’ methods used to study
the formation of terrestrial planets in order to understand why
PDM has not been seen in previous work. The bodies of the inner
Solar System are thought to have formed in a hierarchical process
that began with dust grains entrained within a gaseous disk and
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ended with Mercury, Venus, the Earth–Moon system, Mars, and the
main asteroid belt. This process is difficult to study in its entirety
because of the vast range of mass, time, and distance scales in-
volved. Terrestrial planet formation is therefore broken up into
several discrete stages.

Early on, the largest bodies in the swarm tend to grow fastest, in
a process known as runaway growth, on a timescale of 104—106 y
(Greenberg et al., 1978; Wetherill, 1980, 1990; Lissauer and Stew-
art, 1993; Wetherill and Stewart, 1989, 1993; Kokubo and Ida,
1996; Weidenschilling et al., 1997). When the largest bodies in
the swarm grow large enough to dominate the dynamics of the
disk through gravitational scattering, their growth slows down,
and runaway growth transitions to oligarchic growth (Kokubo
and Ida, 1998, 2000, 2002; Kominami and Ida, 2002; Thommes
et al., 2003; Leinhardt and Richardson, 2005; Leinhardt et al.,
2009; Levison et al., 2010).

The end result of this classic model of embryo growth is an
‘‘oligarchy’’ of many large embryos (10�2 to 10�1 M�, where
1 M� ¼ 6� 1027 g), separated in semimajor axis by �10RH , where
RH ¼ aðM=3 M�Þ1=3 is Hill’s radius, and containing half the mass
of solids in the disk (Kokubo and Ida, 1998). The process of pla-
net-formation then transitions to late-stage accretion, when over
a period of several 107 years, growth of bodies is dominated by
chaotic embryo–embryo mergers (Wetherill, 1985, 1990, 1992;
Agnor et al., 1999; Chambers, 2001; Kominami and Ida, 2002;
Nagasawa et al., 2005; O’Brien et al., 2006; Kenyon and Bromley,
2006; Raymond et al., 2005, 2006, 2009).

The study of terrestrial planet formation has advanced consid-
erably in the past decade with improvements in computing power
(e.g., O’Brien et al., 2006; Raymond et al., 2009). Simulations of the
late-stage accretion generally result in terrestrial planet systems
that broadly resemble our own. For instance, simulations can pro-
duce systems that match the observed orbital excitation of the ter-
restrial planets, as measured by their angular momentum deficit
(AMD), in contrast with the previous generation of simulations
(c.f. Brasser, 2013). Nevertheless, many important problems in ter-
restrial planet formation remain unsolved. In particular, the small
sizes of both Mercury and Mars are difficult to produce in conven-
tional models of terrestrial planet formation (Wetherill, 1991;
Chambers, 2001; Raymond et al., 2009; Morishima et al., 2010).

Various researchers have addressed these specific discrepancies
between terrestrial planet formation model outcomes and obser-
vations. However, the majority of simulations of the late-stage
accretion take as their initial conditions the system of embryos
and planetesimals that result from the ‘‘classic’’ runaway-to-oligar-
chic growth stage, which assumes that embryos grow by accreting
mass from their local feeding zone. These earlier stages are
modeled either using analytical or semi-analytical techniques
(Weidenschilling, 1977a; Greenberg et al., 1978; Wetherill and
Stewart, 1989), hybrid Monte Carlo and N-body codes (Spaute
et al., 1991; Weidenschilling et al., 1997; Bromley and Kenyon,
2006; Kenyon and Bromley, 2006), or very limited fully N-body
simulations (Kokubo and Ida, 1996, 1998, 2000). The results of a
study in these early stages have typically lead to the initial
conditions used in studies of late stage accretion. Here we show
how the addition of PDM could potentially alter the distribution
of mass at the start of late stage accretion.

There are two main limitations in the earlier simulations that
have prevented PDM from occurring. The first limitation is one of
resolution. In Section 2.2 we show that migration occurs when
an embryo is J 100� the mass of a typical local background plan-
etesimal. When the mass ratio between embryos and disk plane-
tesimals is less than �100, embryo motion is stochastic, and
embryos random walk in semimajor axis. When the mass ratio is
above this limit, embryo motion is relatively smooth and mono-
tonic. In a terrestrial planet simulation, this requires a large
number of simulated planetesimals in order to properly model
the full disk, and typically simulations involving embryos embed-
ded in planetesimal disks use planetesimals larger than 1=40 the
mass of the embryos (O’Brien et al., 2006; Raymond et al., 2009).

The second limitation involves assumptions about how
embryos are initially distributed in the protoplanetary disk. An
embryo will only migrate if it is able to travel through an
embryo-free zone of the disk, a criterion that we will quantify in
Section 2.3.5. This requires that embryos form in some places
in the disk before others—a situation that arises in simulations of
runaway and oligarchic growth (Weidenschilling et al., 1997;
Thommes et al., 2003). However, for reasons described above,
N-body models of late-stage accretion take as their initial
conditions a situation in which all embryos throughout the
terrestrial planet region have already formed throughout the disk
(Chambers and Wetherill, 1998; Agnor et al., 1999; Chambers,
2001; O’Brien et al., 2006; Raymond et al., 2009).
2. Quantifying the planetesimal-driven migration process

Planetesimal-driven migration can be understood in the follow-
ing way. A close encounter between a single small planetesimal
and much larger body (such as a planet or planetary embryo) can
either increase or decrease the orbital angular momentum of the
planetesimal and inversely that of the larger body. Whether the
planetesimal experiences an increase or a decrease in orbital angu-
lar momentum depends on details of the encounter. Once a plane-
tesimal begins to scatter off the large body, it will tend to continue
scattering. Scattering will only halt if (1) the planetesimal impacts
the large body, (2) it is ejected from the Solar System, (3) drag
forces remove it from the region of influence of the large body,
(4) it scatters off another nearby large body, or (5) the large body
drifts a significant distance in semimajor axis between scatterings,
thereby moving beyond the reach of the particle.

The large body tries to set up a steady state situation where it is
scattering an equal mass of planetesimals inward as outward. Any
imbalance in the mass of planetesimals that are scattering inwards
compared to the mass of planetesimals that are scattering out-
wards will cause a net angular momentum transfer between the
planetesimal disk and the large body. This results in a drift of the
large body’s semimajor axis, either inwards or outwards in re-
sponse. Several factors can influence the direction of migration.
Kirsh et al. (2009) showed that, in the absence of gas, an isolated
embryo in a cold planetesimal disk starting from a stationary orbit
will tend to migrate inward. However, such an idealized situation
likely never occurs in nature. For instance, when two embryos
are embedded in a planetesimal disk, they tend to repel each other
(Kokubo and Ida, 1995). In addition, migration in either direction is
self-sustaining, meaning that once a large body begins migrating in
one direction it tends to keep moving in that direction (Kirsh et al.,
2009). And so, the outermost embryo of a population will tend to
migrate outward, away from its inward neighbors.

The self-sustaining nature of the direction of migration is due in
part to the nature of the planetesimal disk on either side of the
migrating body. When a large body scatters planetesimals in its
neighborhood, the scattering process excites planetesimals and
increases their eccentricity in a specific way. The Tisserand param-
eters of the planetesimals, defined relative to the large body’s
semimajor axis ap as Tp ¼ ap=aþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=ap 1� e2ð Þ

p
cos i, is approxi-

mately conserved through scatting, so that after scattering plane-
tesimals’ new a; e, and i are constrained to a surface. On a plot of
a versus e, these surfaces have the appearance of two ‘‘tails’’ that
point out and away from the large body. If the large body is migrat-
ing (either inward or outward), then it moves away from the
whichever tail is on its trailing side. Therefore the migrating body
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will always have fewer planetesimals available for scattering on
the side trailing its migration compared with its leading side, and
this bias will lead to self-sustained migration.

Ida et al. (2000) showed that as long as the migration timescale
was high relative to the scattering timescale within the migrating
body’s feeding zone then migration should be self-sustained. This
implies that the mass of the migrating body must be smaller than
its isolation mass in order to sustain migration. Kirsh et al. (2009)
showed that there was a very strong bias that favored inward
migration of isolated embryos, but also found that outward migra-
tion, once initiated, was self-sustaining albeit with a reduced
migration rate. They hypothesize that the bias toward inward
migration, and the consequent lower migration rate for outward
migration, is due to the longer synodic period of planetesimals in
the outer feeding zone relative to the inner one. That is, more
encounters result in a transfer of planetesimals from the inner
feeding zone to the outer on average, therefore drawing the
migrating body toward the Sun. They also showed that the
strength of this bias was a function of the migrating body’s Hill ra-
dius, which were much larger for the giant planets in their study
than for the terrestrial planet embryos in ours. In the PDM simula-
tions of terrestrial planet embryos described below, we did not find
a measurable direction bias in the migration rate.

2.1. The migration rate of inner Solar System embryos

An important quantity for understanding PDM is the migration
rate. In order to place PDM in context with the planet formation
process, it is useful to understand how the migration rate is
affected by properties of the planetesimal disk. First, we will look
at how the migration rate of an embryo is related to the surface
mass density of the planetesimal disk. Ida et al. (2000) estimated
the maximum migration rate assuming only the outer scattering
zone is populated with scattering planetesimals. This is called
the fiducial migration rate, given as:

dap

dt

����
����

fid

¼ ap

Tp

4pRma2
p

M�
; ð1Þ

where Tp is the orbital period of the body at semimajor axis ap in a
planetesimal disk with surface mass density Rm. Note that the fidu-
cial migration rate is independent of the mass of the planet. Kirsh
et al. (2009) found that this fiducial migration rate is effectively
an upper limit, and the observed rate of migration in N-body simu-
lations is 0.2–0.7� the fiducial rate. This rate also assumes that the
eccentricity of the planetesimal disk is relatively low.

An important quantity in setting the migration rate is the sur-
face mass density of planetesimals, Rm. As we attempt to under-
stand the role of PDM in the formation of rocky planets, we must
adopt a model for the surface mass density of our planet-forming
disk. In this paper mainly we use as our disk model some variant
of the so-called ‘‘minimum mass solar nebula’’ (MMSN), a common
starting point for almost all planet formation modeling (Weidens-
chilling, 1977b). This can be expressed as:

RmðrÞ ¼ Rs;1AUðr=1 AUÞp; ð2Þ

where r is the radial distance from the Sun, and Rs;1AU is the surface
mass density of solids at 1 AU. The MMSN is derived by
‘‘reconstructing’’ the nebular disk that formed the planets using
the present masses and distances from the Sun of the planets. A
power law fit to the resulting surface mass density of matter from
this reconstructed disk has values of p ¼ �1:5, and a gas surface
mass density and rock-forming solid surface mass density of
Rg;1AU ¼ 1700—3200 g cm�2 and Rs;1AU � 6—10 g cm�2, respectively
(Weidenschilling, 1977b; Hayashi, 1981). However, caution is noted
because the MMSN is empirically derived with the assumption that
the present mass distribution of the planets reflects the mass distri-
bution of the protoplanetary disk at some time.

While this type of disk profile is often used as a starting point
for planet formation studies, the concept of the MMSN must be
treated with some caution. Protoplanetary disks are dynamic envi-
ronments, far too spatially and temporally complex to reduce to a
single power law surface mass density description (c.f., Armitage,
2010). Nevertheless, the MMSN model is as good a starting point
as any, and with only a few parameters to vary in this simple disk
model (solid mass, gas mass, and a power law profile p) we can
investigate the relevant dependences more clearly than with a
more complex disk model.

We will adopt Rs;1AU ¼ 8 g cm�2 as our canonical value for a
1 �MMSN disk. Because the gas-to-solid ratio at the mid-plane
of the disk is poorly constrained, we will use a both 1700 g cm�2

and 3200 g cm�2 for Rg;1 AU (Capobianco et al., 2011). Observations
of disks around young stars as well as some numerical simulations
of disk evolution suggests that protoplanetary disk surface mass
density profiles might be better described with a slope of
p ¼ �1:0 (Andrews et al., 2010). Therefore, we will also consider
how our results depend on these two different forms of the disk
surface mass density slope.

Another important quantity that sets the migration rate of an
embryo is the amount of mass available for it scatter. PDM is dri-
ven by the exchange of orbital angular momentum between the
planetesimal disk and the embryo. This exchange can only be sig-
nificant if the instantaneous total mass of planetesimals being scat-
tered by the embryo is an appreciable fraction of the embryo’s
mass. The collective mass of planetesimals being scattered by the
embryo is called the encounter mass, Menc , given by:

Menc � 5
Mp

3M�

� �1=3

pRma2
p : ð3Þ

Kirsh et al. (2009) found that there is a transition from a fast migra-
tion regime (where dap=dt does not depend on Mp=Menc) to a slow
migration regime (where dap=dt does depend on Mp=Menc). They de-
rived an empirical fit to the fiducial migration rate that captures
this transition, given by:

da
dt
� 0:5

da
dt

� �
fid

1þ 1
5

Mp

Menc

� �3
" #�1

: ð4Þ

How a migrating embryo transitions between the fast and slow re-
gimes will be important for constraining the conditions under
which PDM can operate on growing embryos in the inner Solar
System.

2.2. N-body simulations of planetesimal-driven migration of isolated
embryos

In this section we begin to develop our criteria for PDM. Recall
that our plan is to run our new accretion code, GAME, described in
Section 3 and Appendix A, and look for objects that should migrate
based on these criteria. We begin to get insight into PDM by per-
forming a series of simulations similar to those of Kirsh et al.
(2009), but for embryos in the inner Solar System rather than ice
giant/gas giant cores in the outer Solar System. This allows us to
compare and contrast the behavior of migrating terrestrial planet
embryos with that of giant planets, which most previous studies
of PDM have focussed on.

We simulated PDM for isolated embryos with mass Mp ranging
from 10�3 M� to 10�1 M�, where 1 M� ¼ 6� 1027 g, in a disk of
planetesimals using a parallelized implementation of the SyMBA
integrator (Duncan et al., 1998). The full N-body dynamics of a
swarm of planetesimals is challenging to compute because the
number of computations goes as OðN2Þ. For numerical expediency,
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Fig. 1. Migration rate normalized to the fiducial rate given by Eq. (1) as a function of
the embryo mass to encounter mass ratio Mp=Menc . The migration rate for each
simulation (which are represented as different cures in the figure) was found by
fitting an 8th order polynomial to the a versus t history of the embryos, and then
taking the derivative of the fitted function. The dashed lines are the empirical
fiducial migration rate given by Eq. (4). Simulations where migration was inward
are drawn with green lines, and those where migration was outward are drawn
with black lines. We find no substantial difference between simulations with
inward vs. outward migration. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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SyMBA introduces a class of particles that only interact or collide
with a small number of larger bodies, but not with each other,
thereby reducing the number of computations needed to approxi-
mately OðNÞ. Thus, with this class of small particle, the collective
effects of a swarm of planetesimals on a massive body can be
investigated in a computationally efficient way. This is a standard
practice that is commonly used in simulations of embryos or plan-
ets that interact with massive planetesimal disks (e.g. Tsiganis
et al., 2005; Morbidelli et al., 2005; Gomes et al., 2005; Kirsh
et al., 2009; Raymond et al., 2009; Batygin and Brown, 2010;
Nesvorný and Morbidelli, 2012).

The planetesimal disks were generated using the surface mass
density formulation of Eq. (2), with p ¼ �1:5, but with Rs;1 AU vary-
ing between 8 and 24 g cm�2 (1–3 �MMSN). Each simulation ini-
tially contained � 104—105 planetesimals with bulk densities of
3 g cm�3, which corresponds to diameters between �200 and
600 km. The eccentricities (e) and inclinations (i) of the particles
were taken from a Rayleigh distribution, where the RMS means
were h�ei ¼ 2h�ii ¼ 2� 10�3. For an embryo with a mass of
10�2 M�, this value of the eccentricity is what we define as the Hill
scaled eccentricity, e, where

e ¼ eRMSRH=a: ð5Þ

This puts the simulation in the regime where the migration rate is
the fiducial rate given by Eq. (1), based on the simulations of Kirsh
et al. (2009). The ratio of the RMS means of h�ei=h�ii ¼ 2 is the based
on equipartition of energy in a self-excited planetesimal disk (Ida
and Makino, 1992). The remaining orbital angles were taken from
a uniform distribution. The embryo was placed on an initially circu-
lar orbit at either 1:00 AU or 1:25 AU and each simulation was run
for 105 y. The global integration stepsize for each simulation was
0:02 y.

We estimated the instantaneous migration rate as a function of
time for each simulation. We do this because, as we will show, the
relative growth rate of small inner Solar System embryos undergo-
ing PDM is quite large, and therefore migrating embryos easily
cross from the fast to the slow migration regimes in a single sim-
ulation. To determine the instantaneous migration rate of our em-
bryo, we first performed a least squares fit of the a versus t history
of the embryo in each simulation to an 8th order polynomial of the
form apðtÞ ¼

P8
i¼0aiti. We then take the first derivative of the fitted

function to obtain an estimate of the migration rate as a function of
time. The choice of an 8th order polynomial is arbitrary, but we
found through experimentation that it is a high enough order to
capture some of the stochastic nature of the N-body simulations,
while low enough that it the fitted function and its first derivative
is well behaved.

Using the Mp versus t history of each embryo, we can plot dap

versus Mp=Menc . We have plotted Eq. (4) along with the polynomial
fits to our simulation results in Fig. 1. Each curve in Fig. 1 is from a
separate simulation, and the migration rate has been normalized to
the fiducial rate given by Eq. (1). The dashed line is the empirical
fiducial rate as a function of the ratio Mp=Menc given by Eq. (4).
Our agreement is good except at large mass ratios.

Our embryos grow relatively rapidly in our simulations and, as
can be seen in Fig. 1, an embryo can grow more than an order of
magnitude in mass, and. We find that the mass growth rate and
the migration rate are correlated and can be expressed as:

dMp

dt
¼ p

10
dap

dt

����
����
fid

Rmap: ð6Þ

We performed sensitivity tests with a range of bulk densities
and found no major density dependence on the migration rate or
growth rate. Embryos migrate at about 0.5� the fiducial rate, given
by Eq. (1), until their Mp=Menc � 2. Once a migrating embryo
reaches Mp=Menc � 3—4, PDM ceases to operate and the embryo re-
mains nearly stationary. In some of our simulations, embryos mi-
grated inward and in others they migrated outward. We plot the
tracks of inward-going embryos as green lines in Fig. 1, and out-
ward-going ones as black lines. Although Kirsh et al. (2009) found
that outward migration for giant planets was approximately 34%
slower than inward migration, we see no significant difference be-
tween the migration rate for inward going vs. outward going
bodies in our simulations.
2.3. The five criteria for planetesimal-driven migration

In the previous section we demonstrated that isolated inner So-
lar System embryos can migrate via PDM, experience substantial
growth during migration, and then halt when the ratio Mp=Menc

reaches �3. While the simulations described above are useful to
study some basic properties of PDM, they do not fully capture
the complexity of embryo behavior in real systems. In particular,
the initial conditions of the above simulations do not resemble
the outcomes of earlier stages of planet formation. They assume
that there is only one embryo in a system, and that it had grown
to 10�2 M� before it could suddenly begin to migrate.

Ideally in order to understand what role PDM will play during
planet formation, we would want to study both the growth of
bodies through accretion and the migration process with a single
code. Unfortunately, this is not technically feasible because the
number of particles needed to correctly model the growth of em-
bryos out of a disk of planetesimals is so large that we cannot mod-
el the N-body gravitational dynamics with currently available
computing hardware. Therefore we perform the calculations in
steps, the first of which requires that we identify the necessary
and sufficient criteria that must be met in order for PDM to occur.
We then apply these criteria as a test within a growth code
(described in Section 3).
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Toward the first step, we have identified five criteria that must
be simultaneously met in order for PDM to occur. For clarity, we
have named the five criteria as follows:

1. The mass ratio criterion.
2. The mass resolution criterion.
3. The disk eccentricity criterion.
4. The crowded criterion.
5. The growth timescale criterion.

In the following subsections, we will describe each of these criteria
in detail.
10 -3

10 -2

10 -1

 0.1  1  10  100

a (AU)

Migration
p=-1.5

p=-1.0

1×MMSN, 4×SL
10×MMSN, 4×SL

Fig. 2. Migration halting mass, defined as Mp=Menc ¼ 3, as a function of semimajor
axis and disk surface mass density and slope of the surface mass density function.
Migration will not occur for Mp values greater than those shown by the dotted lines.
The disk surface mass density is a power law defined by Eq. (2) with p ¼ �1:5 (black
lines) and p ¼ �1:0 (red lines). We have also included the effects of a ‘‘snowline,’’
beyond which Rs is enhanced by a factor of 4 due to the condensation of ices. We
have placed the snowline at 2 AU in our disks. The solid lines correspond to a
1 �MMSN disk (Rs;1 AU ¼ 8 g cm2). The growth of giant planet cores within the
lifetime of the gas disk may require as much as 10� the surface mass density as the
MMSN value (Thommes et al., 2003), and therefore we have also included a
10 �MMSN disk (Rs;1 AU ¼ 80 g cm2) as the dashed lines. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
2.3.1. The mass ratio criterion
Migration will stall if the ratio Mp=Menc J 3, where Mp is the

mass of the embryo and Menc is the total mass of planetesimals
being scattered (Kirsh et al., 2009). We have confirmed this result
in our own simulations in Section 2.2, as shown in Fig. 1. Using the
estimate of Menc given by Eq. (3), the mass ratio criterion can be
expressed in terms of a stopping mass, Mstop, as:

Mstop � 15pð3M�Þ�1=3Rsa2
p

h i3=2
: ð7Þ

If the embryo grows larger than Mstop, it will be unable to experience
PDM. The PDM stopping mass is equivalent to the isolation mass,
which is the largest mass that an embryo can achieve in oligarchic
growth before it depletes its feeding zone of planetesimal mass
(Lissauer, 1987; Bryden et al., 2000). The isolation mass is given by:

Miso ¼ 4pRsa2
pDM; ð8Þ

where DM is the characteristic spacing of embryos. If we take
DM ¼ bRH , where RH is the radius of the embryo’s Hill’s sphere,
and b is a multiplicative factor, then we can rewrite Eq. (8) as:

Miso ¼ 4bpð3M�Þ�1=3Rsa2
p

h i3=2
; ð9Þ

which is identical to Eq. (7) for b ¼ 15=4.
In Fig. 2 we plot Eq. (7) as a function of semimajor axis for four

different disk models. All disk models conform to Eq. (2), although
we have included the effects of a ‘‘snowline,’’ beyond which Rs is
enhanced by a factor of 4 due to the condensation of ices. We have
placed the snowline at 2 AU in our disks. The solid lines in Fig. 2
correspond to a 1 �MMSN disk (Rs;1AU ¼ 8 g cm2), with p ¼ �1:5
(black curves) and p ¼ �1:0 (red curves). The growth of giant pla-
net cores within the lifetime of the gas disk may require as much as
10� the surface mass density as the MMSN value (Thommes et al.,
2003), and therefore we have also included a 10 �MMSN disk
(Rs;1AU ¼ 80 g cm2) as the dashed lines in Fig. 2. For the inner Solar
System, we find that Mstop is typically [10�1 M� for a standard
minimum mass solar nebula (MMSN) disk model with
Rm;1AU ¼ 8 g cm�2.

In the outer Solar System, Mstop can be larger, and objects can
migrate even when they are of the order of 10 M�, which is the
similar to the estimated masses of the cores of giant planets (Miz-
uno et al., 1978; Pollack et al., 1996; Hubickyj et al., 2005). This is
perhaps not surprising considering that the PDM stopping mass is
equivalent to the isolation mass, as shown in Eqs. (7) and (9). Be-
cause the core accretion model for giant planets requires cores to
reach a mass of �10 M� in order to initiate runaway gas accretion,
any disk capable of producing giant planet cores through oligarchic
growth (e.g. Thommes et al., 2003) will also potentially allow those
cores to migrate via PDM. It may even be difficult to build giant
planet cores at all without PDM (Levison et al., 2010).
2.3.2. The mass resolution criterion
As we noted in Section 1.1, typical late-stage numerical simula-

tions take the initial mass ratio between planetesimal and embryos
to be 1=40 (O’Brien et al., 2006; Raymond et al., 2009). Here we ex-
plored the dependence of the ability of the embryo to migrate on
the mass ratio between an embryo and the background planetesi-
mals. Six simulations were performed with similar initial condi-
tions, varying only the masses of the individual planetesimals. In
these simulations, an embryo with a mass of 10�2 M� was placed
at 1:25 AU, surrounded by a disk of planetesimals with a surface
mass density given by Eq. (2) and Rs;1AU ¼ 16 g cm�2 (2 �MMSN).
The number of particles in the simulation was varied so that the
initial ratio of Mp=m varied between 41 and 354, where Mp is the
mass of the embryo and m is the mass of an individual
planetesimal.

Fig. 3 shows that when Mp=m J 100, the embryo’s motion in the
disk is monotonic throughout the simulation, and so PDM occurs.
Below this value of the mass ratio, the motion of the embryo is
much more chaotic. Thus, we adopt Mp=m > 100 as our second
criterion.

2.3.3. The disk eccentricity criterion
Kirsh et al. (2009) found that the migration rate was roughly

constant as a function of the eccentricity divided by the Hill factor,
defined as e ¼ eRMSa=RH , for eK 3. We use a cutoff value of e ¼ 5 for
our criterion, as this is when the migration rate has dropped by
roughly a factor of 10 (Kirsh et al., 2009).

2.3.4. The crowded criterion
Bromley and Kenyon (2011) claimed that PDM should not occur

during planet formation because embryos growing within the
planetesimal disk will be crowded together with other similar-
sized embryos. Whether this is true or not should depend, in detail,
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on the mass ratio between an embryo and its nearest neighbors. If
the neighbors are of similar mass, then scattering between the em-
bryos should prevent migration. However, if the embryo that could
potentially migrate is large relative to its neighbors, then scattering
by the neighbors will be ineffective in preventing migration, so
that PDM will occur. We have quantified where this transition
takes place using SyMBA.

In particular, the purpose of the following numerical experi-
ment is to determine the critical mass ratio between an embryo
and its nearest-neighbor embryo that allows the larger embryo
to migrate past the smaller one instead of being scattered. This is
different than the mass resolution criterion described in Sec-
tion 2.3.2. For that criterion, the critical mass ratio was the ratio
between the embryo and the numerous small planetesimals that
drive PDM. Here we are concerned with a small number of
embryo–embryo interactions.

In a SyMBA run, a 10�2 M� embryo, designated Mp, is embedded
at 1 AU in a disk of planetesimals. The embryo and planetesimals
have a mass ratio Mp=m ¼ 300 in order to satisfy the mass resolu-
tion criterion. To satisfy the mass ratio criterion, the disk surface
density profile, which is spread from 0.9 to 1.8 AU, is set by Eq.
(2), with Rs;1AU ¼ 16 g cm�2 and p ¼ �1:5. The embryo has a smal-
ler neighbor that is placed at 1:16 AU, and whose mass varies be-
tween simulations from 0:05 to 0:2� 10�2 M�. The small embryo
is far enough away from the large one that the latter can establish
PDM before it encounters its neighbor. In addition, an outward
force is applied to the largest embryo for the first 10�2 AU of the
simulation to cause it to migrate at a rate equal to the fiducial rate
given by Eq. (1). This is done so that the large embryo is migrating
toward its smaller neighbor. The global integration stepsize was
0:02 y.
When the two embryos encounter each other, the larger em-
bryo may either continue migrating or reverse direction. We plot
in Fig. 4 the ratio Mp=M as a function of semimajor axis at the mo-
ment when the two embryos encounter each other, where M is the
mass of the smaller embryo and Mp is the mass of the larger one. If
the larger embryo migrates past the smaller one we plot it as a so-
lid square. If instead the larger embryo is repelled by the smaller
one, then we plot it as an open circle. A smaller embryo is not
expected to migrate past a larger one. We see that the larger
embryo is able to migrate past bodies with Mp=M J 10, but can
be hindered by bodies with Mp=M K 5—10. Therefore, we take as
our criterion that an embryo may only migrate if it is at least
5–10� more massive than any other objects it encounters within
its scatting zone. We take as the width of the scattering zone an
annulus of 3RH in the direction of migration (Kirsh et al., 2009).
2.3.5. The growth timescale criterion
In order to be complete, we must also consider the growth of

new embryos along the outward-going trajectory of the migrating
bodies. An embryo must be able to migrate through the disk unen-
cumbered by newly-formed like-sized embryos. Up to now, we
have considered migration criteria that apply to individual objects
in a static disk with the aim to discern whether or not they are
capable of migration. The growth timescale criterion, however, de-
pends on how objects in the rest of the disk are growing, and there-
fore a somewhat different approach is warranted.

Our migration criterion can be quantified by comparing the
timescale for migration, smig , with an appropriate timescale
that can characterize embryo growth, sgrow. The timescale for
migration is smig ¼ a=j _amig j, where we use the approximation
_amig � 0:5da=dtfid, and da=dtfid is given by Eq. (1). The factor of 0:5
is applied based on the results of our simulations shown in Fig. 1.

To develop an embryo growth timescale, sgrow, that can be di-
rectly compared to smig is somewhat more complicated. It is useful
to think about the formation of embryos as an outwardly propagat-
ing ‘‘front.’’ At any given time a semimajor axis exists where the
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largest object in the local swarm is some value that will hinder the
migration of an embryo, which we call Mlarge. The value of Mlarge is
difficult to calculate in general because it depends on the specific
properties of a particular potentially migrating embryo. Neverthe-
less, we will assume that the typical value for Mlarge is the runaway-
to-oligarch transition mass. We justify this assumption with the
following argument. In the runaway growth mode, because
_Mp / Mc

p and c ¼ 4=3, the masses of any two bodies who are ini-
tially nearly the same size will diverge (that is, larger objects grow
faster than smaller ones) (Kokubo and Ida, 1996). In the oligarchic
growth mode c ¼ 2=3, and so the masses of any two oligarchs will
converge over time. Therefore, during runaway growth, the largest
object will continue to build a size advantage over its neighbors.
However, once the system transitions to oligarchic growth, any ob-
ject that might have been able to migrate will begin to lose this
advantage. Thus, the largest advantage will occur at the transition,
which is precisely what we mean by Mlarge.

Ida and Makino (1993) estimated the mass ratio between a
growing embryo and the mass of a typical planetesimal in the
background swarm population at which the transition between
these growth modes occurs:

Mlarge

m
J 50� m

1023 g

 !�2=5

� a
1 AU

� �3=10
� Rm

Rs;std

� ��3=5

; ð10Þ

where we take Mlarge to be the mass of the embryo body at the tran-
sition, and m is the mass of a typical planetesimal. The above equa-
tion has also been normalized with a ‘‘standard’’ MMSN model
where Rs;1AU ¼ 10 g cm2 and p ¼ �1:5. Because embryo growth is
fastest in the innermost part of the planetesimal disk, the first em-
bryos of mass Mlarge will form at the inner edge of the disk.

As time progresses, the semimajor axis where objects have
reached the size Mlarge will move outward. The rate of outward
propagation of this location is dTlarge=da

� 	�1, where Tlarge is the
amount of time needed for runaway growth to produce an object
of mass Mlarge.

Understanding the timescale for embryo growth requires a
quantitative understanding the evolution of the protoplanetary
disk through time. Therefore, first we must describe an analytical
model for the growth of bodies within a planetesimal disk of the
type first pioneered by Safronov (1972). For a number of years
prior to the availability of inexpensive and powerful computer
workstations capable of performing N-body simulations of plane-
tesimal swarms, planet formation via accretion in planetesimal
disks was studied using analytical and semi-analytical techniques.
These techniques, despite their limitations, illuminated many
important processes, and indeed the very concept of ‘‘runaway
growth’’ was developed in this era (Greenberg et al., 1978; Wei-
denschilling, 1980). Even when N-body codes became widely avail-
able, analysis based on Safronov’s coagulation theory were still
employed, as for instance in understanding how runaway growth
slows and transitions to oligarchic growth (Ida and Makino,
1993; Kokubo and Ida, 1998). In a coagulation model, the planetes-
imals are assumed to be in a regime where gravitational focussing
and dynamical friction are both effective. Following Thommes et al.
(2003), the growth rate of a body with mass Mp can be written as:

dMp

dt
’ C

RmM4=3
p

e2
ma1=2 ; ð11Þ

where C ¼ 6p2=3 3= 4qMp

� �h i1=3
G=M�½ �1=2, and qM is the bulk density

of the growing body. The planetesimal disk surface mass density is
RmðaÞ and its RMS mean eccentricity is em. We can solve Eq. (11) for
the time needed to reach Mlarge at semimajor axis a:

Tlarge ¼
3e2

ma1=2
p

CRm
M�1=3

0 �M�1=3
large

� �
; ð12Þ
where M0 is the initial mass of the object that eventually becomes
the embryo. We take the derivative of Eq. (12) with respect to a, and
the embryo growth timescale is then sgrow ¼ a=ðda=dTlargeÞ.

For this calculation, we assume that the eccentricity of the plan-
etesimal disk, em, is set by a competition between self-stirring by
the planetesimals and stirring due to embryos, and damping by
gas drag. It is therefore a complex function of semimajor axis
and time, and depends greatly on models of the gas disk and colli-
sional evolution of the planetesimals. During the runaway stage
the planetesimal disk self-heats due to viscous stirring, that is
planetesimal–planetesimal scattering will cause the eRMS of the
disk to increase over time. Planetesimal-embryo stirring is unim-
portant during the runaway stage because there are so few em-
bryos. When the eccentricity and inclination growth in the disk
is dominated by stirring of the few largest growing bodies, rather
than self-stirring from the swarm of smaller bodies, then the sys-
tem is, by definition, undergoing oligarchic growth.

From Ida and Makino (1993), the timescales for eccentricity
growth due to self-stirring and stirring by oligarchs can be ex-
pressed as:

Tm�m
VS ¼ 1

40
X2a3

Gm

 !2
me4

m

Rma2X
; ð13Þ

TMp�m
VS ¼ 1

40
X2a3

GMp

 !2
Mpe4

m

RMp a2X
; ð14Þ

where X is the Keplerian orbital angular velocity, and RMp and Rm

are the surface mass densities of oligarchs and planetesimals,
respectively. The transition between runaway and oligarchic
growth occurs for Mp such that these two timescales are equal.
Although we do not need Eq. (14) now, we will make use of it later
in Section 3, and we include it here for completeness.

As described above, we assume the eccentricity growth due to
stirring will be counteracted by damping due to gas drag. Follow-
ing Thommes et al. (2003), the gas drag damping timescale is given
by:

Tem
gas ’

1
em

m
ðCD=2Þpr2

mqgasaX
; ð15Þ

where CD � 1 is the dimensionless drag coefficient, and qgas is the
gas volume density (Adachi et al., 1976). Assuming that the gas disk
can be approximated as being in hydrostatic equilibrium with a
temperature profile given as T / rk and a surface mass density
profile R / rp, then the gas density at the mid-plane is given
as q / rðpþk�3Þ=2 (Armitage, 2007). For typical values of k ¼ �1
and p ¼ �3=2 and the MMSN model values for gas
Rg;1AU ¼ 1700—3200 g cm2, then the MMSN gas volume density
profile is qðrÞ ¼ q0r�11=4, where q0 ¼ 1:4—2:7� 10�9 g cm�3.

If we assume that the planetesimal disk is in an equilibrium
state where viscous stirring and gas drag are in balance, then:

emjrunaway ¼
80
p

Gm

X2a3

� �2 aRm

CDr2
mqgas

" #1=5

; ð16Þ

In order to evaluate sgrow, we plug Eq. (16) into Eq. (12). Note that
we only need to consider the runaway growth regime because we
defined Mlarge to be at the runaway-oligarchic growth boundary.
The equivalent formulation for eccentricity in the oligarchic regime
is

emjoligarchic ¼
40
p2

GMp

X2a3

� �2 m
bRHCDr2

mqgas

" #1=5

: ð17Þ

Our last migration criterion therefore states that PDM can only
occur if sgrow > smig . This means that the when this criterion is



D.A. Minton, H.F. Levison / Icarus 232 (2014) 118–132 125
satisfied, the embryo will be migrating outward faster than the
accretion front, thus outrunning it.

It is important to note that, unlike the previous criteria, this is
only a function of the characteristics of the disk itself and does
not require that we perform a detailed Monte Carlo calculation of
accretion before it is evaluated. The other criteria are local and thus
they can be satisfied by an embryo that is lucky and becomes unex-
pectedly large due to a series of larger than ‘‘expected’’ mergers,
which are further enhanced by during the runaway growth phase.
However, it does not matter how lucky an embryo is for the growth
timescale criterion; if the accretion front is expanding outward fas-
ter than the embryo can migrate, then the embryo will eventually
run into a like-size object and PDM will stall. Note that we have not
taken into account the additional growth that the embryo will
experience due to the migration itself, as given by Eq. (6), and
therefore this analysis may be conservative.

We can now compare smig and sgrow. Such a comparison is
shown in Fig. 5 for a 1�, 2�, and 3 �MMSN planetesimal disk.
These results were obtained for a disk model with planetesimals
having a range of initial masses between 3� 10�8—2� 10�6 M�
(corresponding to initial diameters between 50 and 200 km), sim-
ilarly to what was used in Section 2.3.3. As the largest objects in
the distribution grow fastest in the runaway growth mode, M0 is
taken to be the upper end of the mass range and m is taken to be
the lower end of the range. The disk eccentricity used in Eq. (11)
is obtained using Eq. (16) for the equilibrium eccentricity during
runaway growth, and therefore these results depend on the profile
of the gas disk.

As Fig. 5 shows, there is a semimajor axis beyond which sgrow is
longer than smig , which we will say is the point where the embryos
can migrate due to PDM faster than the outwardly-propagating
front on new embryos. This means that embryos that form inward
of this location will not be able to migrate fast enough to outpace
the formation front of new embryos. Outward of this point, em-
bryos migrate faster than the embryo formation front, and there-
fore PDM is possible. We plot the location beyond which PDM
may be possible as a function of disk mass and for our two surface
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Fig. 5. A comparison of the embryo migration timescale with the embryo formation
timescale as a function of disk mass, for disks with a profile given by Eq. (2) with
p ¼ �1:5. At locations in the disk where the embryo formation timescale is shorter
than the embryo migration timescale migration will not be possible, because new
embryos are able to form in-place before older embryos can migrate there. At
locations where the migration timescale is shorter than the formation timescale,
migrating embryos can reach regions in the disk that have not had time to produce
new embryos in-place. With these disk conditions, embryos that form at a K 0:7 AU
will not be able to migrate.
mass density profile slopes in Fig. 6. For the disk models we con-
sider here, PDM becomes possible outward of �0:7—1:0 AU.
3. The onset of PDM in the terrestrial planet zone

We have now established five criteria that must be simulta-
neously met in order for PDM to occur. Next, for a given disk we
must model the evolution of embryos to determine if any of them
can migrate. Based on the growth timescale criterion described in
Section 2.3.5, we do not expect embryos that form inward of �0.7–
1.0 AU to migrate. Outward of this location, the crowded criterion
described in Section 2.3.4 is perhaps the most substantial barrier to
PDM. In order for PDM to occur, embryos must emerge that are 5–
10� larger than their neighbors. Bromley and Kenyon (2011) pro-
pose that this cannot happen because growing oligarchs are always
surrounded by like-sized bodies.

However, embryo growth via mergers is not a continuum pro-
cess, it is discrete and stochastic. That is, bodies do not grow by
some infinitesimal mass dM in some infinitesimal time dt, but
rather mass changes in discrete jumps of DM whenever a merger
happens to occur. Even if the initial planetesimal mass function
(the initial size-frequency distribution of the planetesimals) is a
delta function with a single intrinsic mass, random variations in
merger frequency that must naturally occur will cause some plane-
tesimals to grow slightly faster than others. During the runaway
phase, when dM=dt/

�
M4=3, the differential growth rate will cause

these mass differences to become magnified over time. On average
dM=dt may be described approximately by Eq. (11), but because
PDM occurs for the (locally) very largest bodies within the plane-
tesimal disk, one must account for the stochastic variability in
growth rate. To put it another way, it is not the ‘‘typical’’ embryo
that potentially experiences PDM, it is a statistical outlier.

The difficulty of using N-body codes to study this process is
that planetesimals are quite numerous. A D ¼ 100 km planetesi-
mal with a density of 2:5 g cm�3 has a mass of only 2� 10�7 M�.
This means that in order to simulate enough mass to make the
terrestrial planets, one needs to simulate a minimum of �107

planetesimals of this size. This is far beyond the capability of
N-body codes at the present time. It is this problem that our
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Fig. 7. Example output of a typical GAME run. This run is for a 4 �MMSN disk (Rs;1 AU ¼ 32 g cm�2; p ¼ �1:5) for planetesimals with an initial mean mass Di ¼ 100 km and
dispersion of 50 km. The upper panels show the mass of planetesimals as a function of semimajor axis for three output times. The lower panels show the eccentricity of the
disk at the same three output times.
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Fig. 8. Results from a GAME run at the time of the emergence of a migration candidate. Left panel: The mass of individual objects in the disk as a function of semimajor axis.
The migration candidate is highlighted as a large star. Right panel: The mass cutoff for the disk eccentricity criterion as a function of semimajor axis for a disk in GAME. The
mass cutoff is defined as Mcutoff ¼ 3 M� eRMS=ecutoff

� 	3. The circle plotted is the migration candidate, which just satisfies the disk eccentricity criterion at the time of emergence.
This example comes from a run with Rs;1 AU ¼ 8 g cm�2; Rg=Rs ¼ 525; Di ¼ 50 km, and p ¼ �1:5.
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new Monte Carlo code GAME was designed to address. GAME
stands for Growth And Migration of Embryos. The purpose of
GAME is to simulate the evolution of a planetesimal disk in the
presence of gas drag, at the level of individual planetesimals.
Rather than simulate the N-body gravitational dynamics of this
vast swarm of particles, which is too computationally expensive
to be practical, GAME uses a Monte Carlo approach to simulate
both the growth of planetesimals through mergers, while follow-
ing velocity evolution of the disk using the analytical formalism
captured in Eqs. (13)–(15). Planetesimals are simulated as indi-
vidual bodies that grow by merging with their neighbors. Thus,
they grow in discrete jumps, which, on average, approximate
Eq. (11). Details of how GAME is implemented may be found
in Appendix A.

Using GAME, we are able to identify ‘‘migration candidates,’’
which are objects that satisfy each of the five migration criteria
simultaneously. We performed a large number of simulations to
determine how important disk parameters control the
emergence of migration candidates, and their properties (such as
mass and orbital semimajor axis) when they emerge. The
disk parameters that we allowed to vary were the total solid
disk mass (Rs;1AU ¼ 8—32 g cm�2), the gas-to-solid fraction
(Rg=Rs ¼ 212:5—525, corresponding to our chosen range of
mid-plane disk metallicity), and the initial mass function of the



Table 1
Results from a GAME parameter study.

Rs;1 AU (g cm
�2) Rg=Rs Di (km) Number of runs Nc Nall

8 212.5 100 10 0 0
8 212.5 50 10 5 5
8 525.0 100 10 1 1
8 525.0 50 10 4 2

16 212.5 100 10 1 1
16 212.5 50 10 15 10
16 525.0 100 10 3 3
16 525.0 50 10 14 10
24 212.5 100 10 5 2
24 212.5 50 10 19 14
24 525.0 100 10 7 4
24 525.0 50 10 26 18
32 212.5 100 10 11 5
32 212.5 50 10 20 15
32 525.0 100 10 10 8
32 525.0 50 10 39 31

Nc: Number of objects that satisfy the crowded criterion.
Nall: Number of objects that satisfy all four criteria.
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planetesimals. Our chosen range mid-plane metallicity corre-
sponds to the estimate range of gas density needed to produce
the MMSN of Rg;1AU ¼ 1700—4200 g cm�2 (Raymond et al., 2005)1

divided by our ‘‘canonical’’ MMSN solid density Rs;1AU ¼ 8 g cm�2.
The initial mass function (initial size distribution) of the plane-

tesimals is poorly constrained. The size distributions of large
bodies in the Main Asteroid Belt as well as the cold classical Kuiper
Belt suggest that they were initially highly depleted in objects with
D < 50—100 km and that the size distribution above 100 km was
very steep (Morbidelli et al., 2009; Fraser et al., 2008). This prefer-
ence for large sizes is consistent with planetesimal formation by
some type of gravitational instability or turbulent concentration
1 The upper range of Rg;1AU ¼ 4200 g cm�2 reported by Raymond et al. (2005) is
taken from Weidenschilling (1977b). However, Weidenschilling (1977b) actually
report Rg;1AU ¼ 3200 g cm�2, and therefore this appears to be a typo within the
Raymond et al. (2005) paper.
mechanism (see Chiang and Youdin, 2010, for a review), and with
the formation of wide Kuiper Belt binaries (Nesvorný et al., 2010).

For simplicity, we have modeled our initial population of plane-
tesimals as being derived from a normal distribution with a mean
diameter, Di. For most of our runs we set the initial dispersion, ri,
to be equal to 1

2 Di. We also explored three different values for dis-
persion, ri ¼ 1

4, 1
2, and 3

4 Di, for the case where Rs;1AU ¼ 8 g cm�2 and
Di ¼ 50 km. Based on resolution constraints in GAME, it is imprac-
tical to model disks with Di K 50 km. Therefore we only modeled
two values of Di;50 km and 100 km, which, according to Morbidelli
et al. (2009), is consistent with the peak of the initial mass distri-
bution in the asteroid belt. While Weidenschilling (2011) argues
that the initial planetesimals may have been much smaller than
this, as we will demonstrate with our GAME results, smaller initial
planetesimals may make migrating embryos more likely. Thus
the larger initial planetesimals used here may be somewhat
conservative.

All disks in our GAME runs spanned the region from 0:4 to 2 AU
and the planetesimals were modeled as rocky objects with density
q ¼ 3 g cm�3. We ran 10 instances of GAME for each unique set of
parameters, varying only the random number generator seed. Each
disk was allowed to evolve for 1 My.

As we explained above, we can apply the growth timescale cri-
terion (Section 2.3.4) to the system before the GAME calculation is
performed. As the GAME simulation progresses, we test the
remaining four criteria. In particular, we first calculate whether
or not any bodies satisfy the mass ratio, mass resolution criteria,
and disk eccentricity criteria described in Sections 2.3.1–2.3.3. If
any bodies pass these criteria, then we test against the crowded
criterion, described in Section 2.3.4. Because of the inside-out nat-
ure of growth in the disk, we only consider outward-going migra-
tion (that is, the inward-side of any embryo will always fail the
crowded criterion).

To test the crowded criterion, we determine if a body is at least
10�more massive than any other body in both its own semimajor
axis bin or the bin immediately outward of it. This is somewhat
conservative, because, as we showed in Fig. 4, migrating bodies
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only 5� more massive than bodies that they encountered some-
times were able to migrate past.

Fig. 7 shows an example of the disk evolution during a typical
GAME run. This run is for a 4 �MMSN disk (Rs;1AU ¼ 32 g cm�2

and p ¼ �1:5) for planetesimals with an initial mean mass
Di ¼ 100 km and dispersion of 50 km. The upper panels of Fig. 7
show the mass as a function of semimajor axis for three different
times. The lower panels shows the evolution of the disk eccentric-
ity for the same three times. This figure shows how the evolution
of the disk is ‘‘inside-out,’’ that is that growth of embryos occurs
faster in the innermost part of the disk. In general, the disk eccen-
tricity decreases with increasing semimajor axis. The large varia-
tions in the inner-most part of the disk result from the fact that
large embryos have opened gaps in these regions, and therefore
the assumption that the disk eccentricity can be modeled as a dis-
tribution with a mean solved by Eq. (19) breaks down.

In Fig. 8 we plot the state of the disk during a typical GAME run
at the moment that a migration candidate has been identified. The
left panel shows the mass of particles in a GAME run at a time when
a migration candidate has been identified. The migration candidate
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is indicated by a star. The right panel illustrates the disk eccentric-
ity criteria by recasting the eccentricity cutoff in terms of mass:

Me;crit ¼ 3 M�ðeRMS=ecritÞ3; ð18Þ

where ecrit is the critical eccentricity scaled by the Hill factor above
which PDM is no longer effective. Embryos with masses above Me;crit

satisfy the disk eccentricity criterion. The right panel of Fig. 8 plots
Me;crit as a function of semimajor axis for ecrit ¼ 5. The location
migration candidate is indicated as a star on this plot. As Me;crit is
simply proportional to e3

RMS, this plot shows how the disk eccentric-
ity has evolved in this GAME run. Fig. 8 shows a general result of our
simulations—if an object even marginally satisfies the disk eccen-
tricity criterion and begins relatively slow outward PDM, it will
soon encounter colder disk material and thus be able to migrate
at the rate given by Eq. (1).

The results of our parameter study are summarized in Table 1.
The table lists the parameters of each type of run (disk mass,
gas-to-solids ratio, and mean initial planetesimal diameter) as well
as the number of runs with these parameters. All runs in the above
GAME simulations had p ¼ �1:5. In the next columns we list the
number of objects that satisfy the crowded criterion alone, and
then those that satisfied all five criteria in total for all runs. All
migration candidates that satisfied the crowded criterion also sat-
isfied the mass ratio and mass resolution criteria. Some of these
objects failed the disk eccentricity criteria, so the total number of
objects that satisfied all five criteria is lower than those that only
satisfied the crowded criterion.

Fig. 9 shows all objects that satisfy the crowded criterion. How-
ever, some of those objects are above the e ¼ 5 cutoff (dashed line)
that defines our disk eccentricity criterion, and therefore are not
expected to migrate. The semimajor axis and eccentricity scaled
by the Hill factor are plotted at the time that GAME identified that
they met the crowded criterion. We see little difference between
runs with a high gas-to-solid ratio compared to those with a lower
ratio (opened and filled circles, respectively). Therefore, the ability
of disk to produce objects capable of PDM is not sensitive to the
gas-to-solid ratio (at least for the values of Di we have studied
here).

Fig. 10 shows the mass versus semimajor axis of all migration
candidates (those that satisfy all five PDM criteria). We see that
most migration candidates emerge from a narrow zone between
�0.7 and 1.2 AU, with many additional candidates out to the edge
of the simulated disk at 2 AU. For objects inward of �0.7 AU the
growth timescale criterion is not met (see Fig. 6), and for objects
outward of �1.5 AU the disk eccentricity criterion is often not
met (see Fig. 9). The mass of the migration candidates is also con-
fined to 10�3—10�1 M�. On average, more massive disks create
more massive migration candidates. The occurrence of a migration
candidate may affect how later embryos grow, so in GAME runs in
which a single disk generates multiple migration candidates, the
first occurrence of a candidate is indicated with a filled symbol
in Fig. 10. Later occurrences are indicated with open symbols.

The number of migration candidates that emerge in a single
disk is correlated with both the initial planetesimal size, Di, and
the disk mass. Fig. 11 shows the statistical results of multiple GAME
runs with similar characteristics. Disks with Rs;1AU ¼ 8 g cm�2, cor-
responding to 1 �MMSN, with Di ¼ 100 km very rarely produce
migration candidates (in 20 runs we found only 1 candidate) with-
in 1 My. Disks with Rs;1AU ¼ 32 g cm�2, corresponding to
4 �MMSN, with Di ¼ 50 km, on the other hand, usually produces
several migration candidates within 1 My. Therefore, massive disks
with small planetesimals favor PDM of embryos. Recall that the
memory limitations of GAME require us to keep Di > 50 km. And
yet it is possible that the initial sizes of planetesimals were much
smaller than this (Weidenschilling, 2011), and we may be underes-
timating the number of embryos capable of experiencing PDM. We
have also separated out runs with different values of the gas-to-so-
lid ratio (Rg=Rs). There appears to be a slight bias toward more
migration candidates for the more gas-rich disk, but only one set
of conditions (Rs;1AU ¼ 32 g cm�2;Di ¼ 50 km) produced a signifi-
cant difference.

We also explored the effect that the shape of the initial size dis-
tribution of the planetesimals has on the number of migration can-
didates. Because we took our initial size distribution from a
Gaussian distribution, the width of the distribution (given by the
variance, r2

i ) was a free parameter. We performed a repeat of the
GAME runs with Rs;1AU ¼ 8 g cm�2 and Di ¼ 50 km, but varied the
width of the initial distribution, ri to be 1

4 ;
1
2, and 3

4 Di. The results
are shown in Fig. 12. The average number of migration candidates
was slightly higher for disks with the narrower initial size distribu-
tion, but it is not clear that this is significant given the small total
numbers of candidates in each simulation.
4. Conclusion and discussion

Planetesimal-driven migration (PDM) is potentially an impor-
tant process in the evolution of the inner Solar System. In particu-
lar, the effects of PDM may alter the mass and semimajor axis
distribution of embryos during the early stages of planet forma-
tion. In the standard model for terrestrial planet formation, em-
bryos form in the runaway and oligarchic growth stages until
they deplete their local feeding zones. Planets then form in the
late-accretion stage as a consequence of embryo–embryo mergers.
We show that some embryos may not remain stationary, but in-
stead may migrate outward.

We have identified five criteria that must be met in order for
any particular embryo within a planetesimal disk to begin plane-
tesimal-driven migration. These criteria are detailed in Sections
2.3.1–2.3.5, and are summarized as follows: (1) The mass ratio cri-
terion (Section 2.3.1): A migrating embryo must be at least 3�
more massive than the total mass of planetesimals in its encounter
zone. (2) The mass resolution criterion (Section 2.3.2): A migrating
embryo must be at least 100� more massive than the average
planetesimal it encounters. (3) The disk eccentricity criterion (Sec-
tion 2.3.3): The local eccentricity scaled by the Hill factor, defined
in Eq. (5), of the planetesimal disk that a migrating embryo is
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embedded in must be less than 5. (4) The crowded criterion (Sec-
tion 2.3.4): A migrating embryo must be 5–10�more massive than
any body that it encounters. (5) The growth timescale criterion
(Section 2.3.5): A migrating embryo must outpace the outwardly
propagating embryo formation front within the disk. For a variety
of plausible Solar System planetesimal disks, we find that only em-
bryos that form outward of �0.7–1.0 AU satisfy the growth time-
scale criterion.

Using a Monte Carlo code we have developed called GAME,
we model the growth of embryos from a planetesimal disk in or-
der to determine which Solar System-like disks produce embryos
that satisfy all five of the above PDM criteria. GAME models em-
bryo formation through pairwise merging of discrete bodies in
such a way that approximates analytical models of runaway
and oligarchic growth. Through GAME simulations we have
determined that Solar System-like disks produce on the order a
few embryos capable of undergoing PDM in the terrestrial planet
formation zone between �0.7 and 2.0 AU. The number of migrat-
ing embryos produced by any given disk is correlated with disk
mass, that is, more massive disks produce more migrating bodies
on average than less massive disks. In disks with Rs;1AU ¼ 8 g cm2

(the standard minimum mass solar nebula disk), in 40 runs we
produced an average of 0:2 migrating embryos per run. Only
one simulation out of the 40 produced 2 candidates. The rest
produced 0 or 1. In contrast, out of 40 runs with disks 4� as
massive, we produced an average of 1:5 migrating embryos per
run. One simulation out of the 40 produced 7 candidates. The
number of migrating embryos is also correlated with the initial
mass of the planetesimals, such that disks with smaller planetes-
imals tend to produce more migrating embryos on average than
disks with larger planetesimals. In simulations with
Rs;1AU ¼ 8 g cm2 and Di ¼ 50 km, we produced an average of 0:4
migration candidates per simulation, but with Di ¼ 100 km we
only produced 0:05 candidates on average. For 4� more massive
disks, we produced an average of 2:3 and 0:7 migration candi-
dates for Di ¼ 50 km and 100 km, respectively, and all but one
disk with Di ¼ 50 km produced at least one PDM candidate.
Due to memory limitations of the GAME code, we have only sim-
ulated disks with initial planetesimals of Di ¼ 50—100 km. We
find no correlation between the number of migrating embryos
produced by a disk and the solid to gas ratio of the disk.

In our analysis, we have assumed that turbulence is not impor-
tant for the eccentricity distribution of planetesimals. It has been
shown that density variations in the gas disk due to turbulence
may excite planetesimal eccentricities (Ogihara et al., 2007; Ida
et al., 2008; Yang et al., 2009; Nelson and Gressel, 2010; Gressel
et al., 2011; Yang et al., 2012). Ida et al. (2008) suggested that
the eccentricity excitation due to turbulence should be so high at
1 AU that collisions between planetesimals with D < 300 km
would always be erosive. This level of eccentricity excitation would
likely preclude PDM of any embryos due to failure of the disk
eccentricity criterion (Section 2.3.3). However, the amount of
eccentricity excitation in that model was a function of a dimen-
sionless hydrodynamic turbulence strength parameter, c. Yang
et al. (2009) using a different disk model produced an equivalent
value of c that was a factor of �5 less than the fiducial value of
Ida et al. (2008), and concluded that turbulence was not an impor-
tant factor in setting planetesimal eccentricity. As evaluating mod-
els of disk turbulence is beyond the scope of the present work, we
did not consider the effect of turbulence.

Here we determine how the migration process might effect the
growth of planets in the 1–1.5 AU region. We accomplish this with
a direct N-body simulation. We took a snapshot of a GAME simula-
tion at the moment a migration candidate was identified to gener-
ate a set of initial conditions for an N-body simulation, which was
done with SyMBA. This run was for a Rs;1AU ¼ 8 g cm�2 and
p ¼ �1:5 (1 �MMSN) disk with Di ¼ 50 km. The migration
candidate emerged at t ¼ 1:487� 105 y at 0:965 AU with a mass
of 2:9� 10�3 M� (about a quarter of a lunar mass). At this point
in time, there were � 5� 106 particles remaining in the GAME sim-
ulation—many more than can be handled in a N-body simulation.
Thus, we employed the following algorithm for generating the ini-
tial conditions for the disk particles.

In Section 2.3.2 we showed that if the masses of individual disk
particles were within a factor of �100 the mass of the embryo then
they can affect migration, but the embryo’s behavior was insensi-
tive to the mass of the individual planetesimals if they were smal-
ler than this. Thus, in order to preserve the graininess of the disk,
we kept all the larger planetesimals. In particular, in order to be
conservative, if the masses of any particular GAME particle were
greater than 1=200 the mass of the migration candidate, that par-
ticle was retained as an individual body in the SyMBA simulation.
The rest of the particles were combined into particles with 1=200
the mass of the migration candidate, in such a way that the mass
versus semimajor axis distribution mimicked that of the full set
of small GAME particles. The e and i of these small particles were
drawn from Rayleigh distributions with a mean based on values
from the GAME snapshot.

In order to reduce the amount of integration time, we only used
the portion of the GAME disk between 0:8 and 2:0 AU. Particles
with mass greater than 0.5� the mass of the migration candidate
were considered ‘‘embryos’’ and fully interacted gravitationally
with each other. Particles less than this mass were considered
‘‘planetesimals’’ and gravitationally affected the embryos, but not
each other. This procedure resulted in a SyMBA input file with
�144,000 particles, 20 of which were fully interacting embryos.
Choosing to limit the mass cutoff to 0.5� the mass of the migration
candidate was done so for expediency. The total integration time
using the parallelized SyMBA took approximately three months.
We estimate that, had we chosen a mass cutoff of 0.2� the mass
of the migration candidate, the same simulation would have taken
2 years. The surface mass density, eccentricity, and inclination as a
function of semimajor axis of the planetesimals of the SyMBA
initial conditions matched as closely as possible that described
by the GAME snapshot at the moment of the migration candidate
emergence.

The global integration stepsize for the SyMBA integration was
set to 0:02 y, and the integration was halted after 2:9� 105 y. No
nebular gas effects were simulated. Three snapshots of a versus e
for the initial conditions, t ¼ 4� 104 y, and the final time are
shown in Fig. 13. (Note that times in the figure are taken from
the beginning of the N-body simulation and do not include the
1:487� 105 y it took for the embryo to form.) These snapshots
show the general behavior of the system is consistent with that
expected. The migration candidate migrate away from the region
it emerges from. The mass and semimajor axis as a function of
time for the migration candidate in the SyMBA run are plotted
in Fig. 14. We see that the candidate initially migrates inwards,
but encounters a similar-sized embryo and scatters away from it,
and thus reverses direction. In other words, the migration candi-
date fails the crowded criterion for inward-going PDM. However,
no similar-sized embryos exist in the outward-going direction,
so the migration candidate migrates outward unhindered. Migra-
tion slows down and ultimately halts when the migrating em-
bryo reaches �1:2 AU. At this point it has grown to a mass of
�0:07 M�, and migration halts because it fails the mass ratio cri-
terion for value for Rs;1AU (see Eq. (7) and Fig. 2).

The behavior of the above simulation is consistent with that ex-
pected based on our discussion of the role of PDM so far, and the
final distribution of embryos shown in the bottom panel of
Fig. 13 is very different than the standard distribution used as ini-
tial conditions for in late-stage accretion simulations. To illustrate
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this, we plotted each embryo in Fig. 13 with red error bars that are
drawn to span 10� RH both inward and outward, which is the as-
sumed characteristic spacing of embryos at the start of late stage
accretion (Kokubo and Ida, 1998). The outermost embryos (the
ones that have experienced PDM) are spaced many 10s of RH apart
from each other. PDM may therefore be an important part of the
formation history of planets, and it should not be ignored.
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Appendix A. Description of the Monte Carlo planetesimal
merger code GAME

GAME (Growth And Migration of Embryos) uses a Monte Carlo
approach to simulate the growth of planetesimals into planetary
embryos, described by Eq. (11) for a population of planetesimals
with a realistic initial masses. There are two components to GAME:
individual bodies, and binned disk parameters. The individual
bodies are stored in array, and each element contains information
about the body’s mass, diameter, and semimajor axis. The disk
component is stored in a smaller array that represents average
properties of the disk within finite semimajor axis bins. Each ele-
ment of the disk properties array contains the inner and outer
boundary of the bin, the mean eccentricity and inclination, the
median planetesimal mass, the total mass and number of oligarchs,
the surface mass density of oligarchs, and the total surface mass
density of the bin. Objects are considered to be oligarchs if their
mass is greater than the planetesimal-to-oligarch transition mass
defined by Eq. (10).

First, a population of planetesimals is constructed with some
surface mass density, RmðaÞ, using i particles drawn from a mass
distribution set by the user. Each particle represents a single plan-
etesimal in the disk. The initial eccentricity of the disk is set by the
user, and disk properties are computed in every bin based on the
population of bodies found within.

In a time interval Dt we solve for the mass growth DMi based on
Eq. (11), and using disk properties from the bin where particle i re-
sides. Then we randomly select particle j out of a population of
nearby particles (we use 5� the Hill’s radii as the size of the feed-
ing zone for this work). Gravitational focusing is implicitly in-
cluded in Eq. (11).

Once particle j is chosen, we then choose a random number pmerge

from a uniform distribution between 0 and 1. If pmerge < DMi=Mj,
then a merger takes place and the mass of particle j is added to that
of particle i, and particle j is taken out of existence. The semimajor
axis of particle i is updated with the mass-weighted mean of the
semimajor axes of i and j. If DMi=Mj > 1, then the above procedure
is repeated with DM0

i ! DMi �Mj. If pmerge > DMi=Mj, then no mer-
ger takes place, but the particle is given a change in semimajor axis
(in a random direction) to approximate effects of close encounters.
We do this using the semimajor axis drift rate for particles experi-
encing PDM given by Eq. (1).

Once the merger calculation is finished, then i is iterated to the
next object, and the procedure is repeated until all objects have
been sampled. The binned disk properties are then recalculated
using the updated state of the particle disk. The eccentricity of
the disk is calculated using an adaptive stepsize Runge–Kutta algo-
rithm to solve:
de2

dt
¼ e2

TVS
� e2

Tgas
; ð19Þ

where TVS is one of the viscous stirring timescales, either Eq. (13) or
(14) based on whether or not oligarchs are present within the bin,
and Tgas is the gas damping timescale given by Eq. (15). The inclina-
tion is set to half the eccentricity.

GAME also contains a simple fragmentation model. The relative
velocity at the time of merger is estimated using the relationships
estimated by Lissauer and Stewart (1993), where:

v imp ¼
5
4

e2 þ i2
� �1=2

: ð20Þ

Using the strength law of Benz and Asphaug (1999), we calculate a
fragmentation parameter, pfrag , where:

pfrag ¼
v2

imp

2Q	D
; ð21Þ

and Q 	D is the specific energy required to remove half the mass of
the body. If pfrag > 1, then the merger is not allowed to proceed,
even if pmerge < DMi=Mj.

The approach of GAME has significant advantages to the prob-
lem of identifying migration candidates over statistical codes such
as Boulder (cf., Morbidelli et al., 2009). Because of the crowded cri-
terion, described in Section 2.3.4, objects that are candidates for
planetesimal-driven migration must be at least 5–10� more mas-
sive than any of its nearby neighbors. Therefore that body is by def-
inition a statistical outlier in the local mass distribution.
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